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FOREWORD

I first presented the lecture "Areas and Logarithms" in the
autumn of 1951 at Moscow University to a large audience of
senior schoolchildren intending to participate in the Mathematics
Olympiad. 'The aim of the lecture was to present a geometric
theory of logarithm, in which logarithms are introduced as
various areas, with all the properties of the logarithms then
being derived from those of the areas. The lecture also introduced
the most simple concepts and elements of integral calculus,
without resort to the concept of a derivative.

The lecture is published in this booklet with some additions.
The reader can begin the book without even knowing what a
logarithm is. He need only have a preliminary knowledge of the
simplest functions and their graphical representation, of geometric
progressions, and of the concept of limit.

If the reader wishes to broaden his knowledge of logarithms
he is referred to the books The Origin of Logarithms by
I. B. Abelson and Series by A. I. Markushevich (in Russian). The
last chapter of the latter book contains an alternative theory of
logarithms to that presented here.

The present publication includes a Supplement in which Simpson's
rule and some of its applications can be found. In particular,
the nurnber 1t is calculated.

The author



1. Suppose a function is given which means that a method is
indicated which allows us to associate every value of x with a
corresponding value of y (the value of the function). Usually
functions are defined by formulas. For instance, the formula y = x 2

defines y as a function of x. Here, for every number x (say,
x = 3) the corresponding value of y is obtained by squaring the
number x (y = 9). The formula y = l/x defines another function.
Here for every nonzero x the corresponding value of y is the
number inverse to x; if x = 2 then y = 1/2 and if x = - 1/2
then y = - 2.

When we speak of a function without indicating what particular
function is meant we write y = f(x) (read "y is f of x"). This
means that y is a function of x (perhaps y = x2

, or y = l/x,
or some other function). Recall the idea of number lettering:
the method just described closely resembles it, for we can speak
either of the numbers 2, - 1/2, V2 or of a number a,
understanding it as one of these or any other number. Just as
we use different letters to designate numbers, so we can describe a
function as y = f(x), or use some other notation, for instance
y = g(x), or y = h(x), etc. Thus, if a problem involves two
functions, we can denote one of them as y = f(x) and the other
as y = 9 (x), and so on.

The function y = f(x) can be shown graphically. To do this we
take two mutually perpendicular straight lines Ox and Oy - the
coordinate axes (see Fig. 1) - and, after choosing the scale unit,
mark off the values of x on the x-axis and the corresponding
values of y = f(x) on the lines perpendicular to Ox (in the
xOy plane). In so doing the rule of signs must be adhered to:
positive numbers are denoted by line segments marked off to the
right (along the x-axis) or upwards (from the x-axis) and negative
numbers are marked off to the left or downwards. Note that
the segments marked ofT from the point 0 along the x-axis are
called abscissas and the segments marked off from Ox at right angles
to it are called ordinates.

When the construction just described is carried out for all
possible values of x, the ends of the ordinates will describe a
curve in the plane which is the graph of the function y = f(x)
(in the case of y = x2 the graph will be a parabola; it is shown in
Fig~ 2).

Take any two points A and B on the graph (Fig. 1) and drop
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from them perpendiculars AC and BD to the x-axis. We obtain a
figure ACDB; such a figure is called a curvilinear trapezoid.
If, in a special case, the arc AB is a line segment not
parallel to Ox, then an ordinary right-angled trapezoid is obtained.
And if AB is a line segment parallel to Ox, then the resulting
figure is a rectangle.

Thus, a right-angled trapezoid and a rectangle are special
cases of a curvilinear trapezoid.

y

Fig. I Fig. 2

The graph of the function depicted in Fig. 1 is located above
the x-axis. Such a location is possible only when the values of the
function are positive numbers.

In the case of negative values of the function the graph is
located below the x-axis (Fig. 3). We then agree to assign a
minus sign to the area of the curvilinear trapezoid and to
consider it as negative.

Finally it is possible for the function to have different signs
for the different intervals of the variation of x. Its graph is then
located partly above Ox and partly below it; such a case is shown
in Fig. 4..Here the area A'C'D'B' of the curvilinear trapezoid
must be considered negative and the area A" C"D"B" positive.
If in this case we take points A and B on the graph, as shown
in the figure, and drop perpendiculars AC and BD from them to the
x-axis, we then obtain a figure between these perpendiculars which is
hatched in Fig. 4. The figure is called a curvilinear trapezoid,
as before; it is bounded by the arc AKA'B'LA"B"B, two
ordinates AC and BD and a segment CD of the abscissa axis.
We take as its area the sum of the areas of the figures ACK,
KA'B'Land LA"B"BD, the areas of the first and the third of them
being positive and the area of the second negative.

The reader will readily understand that under these 'Conditions
the area of the whole curvilinear trapezoid ACDB may turn out
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to be either positive or negative, or in some cases equal to
zero. For instance, the graph of the function

y = ax (a > 0)

is a straight line; here the area of the figure ACDB (Fig. 5)
is positive for OD > DC, negative for OD < OC, and equal to
zero in the case of OD = OC.
y

y

o c

Fig. 3

D
x

Fig. 4

x

2. Let us determine the area S of a curvilinear trapezoid.
The need to calculate areas arises so often in various problems of
mathematics, physics and mechanics that there exists a special
science - integral calculus - devoted to methods of solving problems
of this kind. We shall begin with a general outline of the
solution of the problem, dividing the solution into two parts.
In the first part we shall seek approximate values of the area,
trying to make the error in the approximation infinitely small;
in the second part we shall pass from the approximate values
of the area to the exact value.

First let us replace the curvilinear trapezoid ACDB by a stepped
figure of the type shown in Fig. 6 (the figure is hatched). It is
easy to calculate the area of the stepped figure: it is equal to
the sum of the areas of the rectangles. This sum will be
considered as being the approximate value of the sought area S.

When replacing S by the area of the stepped figure we make
an error ex; the error is made up of the areas of the curvi
linear triangles blacked-out in Fig. 6. To estimate the error let us
choose the widest rectangle and extend it so that its altitude
becomes equal to the greatest value of the function (equal to
BD in the case of Fig. 6). Next let us move all the curvi
linear triangles parallel to the x-axis so that they fit into that
rectangle; they will form a toothed figure resembling the edge of a saw
(Fig. 7). Since the whole figure fits into the rectangle, the error ex
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equal to the sum of the areas of the saw teeth * must be less than
the area of the rectangle. If its base. is S we obtain Iell < S· BD.
Hence, the error a. can be made infinitesimal if the rectangles in
Fig. 6 are taken to be so narrow that the base S of the widest
of them is a sufficiently small number. For example, if BD = 20,
and we want the area of the stepped figure to differ from S by
less than 0.001, we must assume 8· BD = 208 to be less than

y

Fig. 5

x

Fig. 6

0.001, i.e. 8 < 0.00005. Then

Ia.1 < B·BD < 0.001.

Nevertheless, however small we make B, an error el will result
every time, if only a very small 0 ne, since the area of the
curvilinear trapezoid does not equal that of the stepped figure.

The second, and final, part of the solution of the problem consists
in passing to the limit. We assume that we consider not one,
and not two, but an infinite number of stepped figures such as
the one shown in Fig. 6. We take more and more rectangles,
increasing their number indefinitely, making the base 8 of the
widest rectangle smaller and smaller, so that it tends to zero.
The error el resulting from the replacement of the area of the
curvilinear trapezoid by the area of the stepped figure will

In Figs. 6 and 7 the graph of the function is like the slope up (or
down) a hill. Were the graph more complicated, with alternating rises
and descents (see, for instance, Fig. 4), then the curvilinear triangles
transferred into a single rectangle would overlap and the sum of their areas
could turn out to be larger than the area of the rectangle. To make our
reasoning applicable to this more complex case as well, let us divide the
figure into parts to make the graph, within the limits of a single part,
look like a single rise, or a single descent, and consider each part separately.
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then become increasingly small, and indefinitely approach zero
as well. The required area S will be obtained as the limit of the
areas of the stepped figures.

3. Let us follow the reasoning used in Section 2 to estimate the
area of the curvilinear trapezoid in the very important special
case when the function y = f(x) is a power with an integral
nonnegative exponent y = xII:. For the exponents k = 0, 1, 2, we
obtain the functions y = XO = 1, y = Xl = X, Y = x 2

• Their graphs.

y

Fig. 7

are easy to construct: they are, respectively, a straight line
parallel to the x-axis and passing above Ox at a unit distance
(Fig. 8), a bisector of the angle xOy (Fig. 9), and a parabola
(Fig. 10).

If we use higher exponents, we obtain the functions y = x 3
,

Y = x", Y = x 5
• These graphs are shown in Figs. 11, 12 and 13.

If k is an odd number, the graphs are symmetrical with
respect to the point 0 (Figs. 9, 11, 13), and if k is an even
number, then they are symmetrical with respect to the y-axis
(Figs. 8, 10, 12).

If k ~ 1, the graphs pass through the point O. In this case the
greater the value of k, the closer the graphs are to the x-axis
in the proximity of the point 0 and the steeper they rise
upwards (or fall downwards) as they recede from the point o.

Each of the figures 8-13 contains a hatched curvilinear trapezoid.
The areas of these trapezoids are easy to find when k = 0
and k = 1. Indeed, if k = 0, the area of. ACDB is equal to CD· AC =
= (b - a)·1 = b - a; if k = 1, then the area of ACDB is

CD. AC+BD =(b_a)a+b = b
2-a2

222
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Let us prove that if k == 2, the area of ACDB is equal to

b3 _ a3 b4 - a4

3 -; ~~ k = 3, the area of ACDB is 4 ,etc. We shall

prove that in the general case, when k is any integral nonnegative
number, the area of the corresponding curvilinear trapezoid is

b"+1 _ ak +1

equal to k + 1 . It is evident that this general result

covers all the special cases discussed above.

y
8

Fig. 13

To make it easier to follow the calculations below let us assume
a definite numerical value for the exponent k, say k = 5. Let
us further suppose that 0 < a < b. Consequently we refer to the
graph of the function y = x 5 and, following the reasoning
outlined in Section 2, prove that the area of the curvilinear

trapezoid ACDB (Fig. 14) is equal to b
6

~ a
6

•

4. We have to calculate the sum of the areas of the very
large number of rectangles which make up the stepped figure
(Fig. 14). To simplify our job we choose the rectangles so
that their areas form a geometric progression. To do this
we take the points E, F, G, H, ... , 1 on the x-axis so as to
make the line segments OC = a, OE .. OF, OG, ... , OJ, OD = b
form a geometric progression: we designate the number of terms in
this progression by n + 1 and its common ratio by q (since
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b > a, q > 1). Then we have the equalities

OC = a, OE = aq, OF = aq",

OG= aq3, ••• , OI=aq"-l, OD±:aq"=b.

Fig. 14 depicts six rectangles and hence n + 1 = 7, but we
shall suppose in what follows that n is an arbitrarily large number,
say n = 1000, 10000, 100000, etc.

y 8

Fig. 14

x

The bases of the rectangles form a geometric progression with
the same common ratio q:

CE=OE-OC=a(q-l), EF=OF-OE=aq(q-l),

FG=OG-OF= aq2(q-l), ... ,

JD = OD - OJ = aq"-l(q - 1)

13



(the number of terms in this and the following progressions
is equal to n and not to n + 1).

The altitudes of the rectangles are the ordinates CA, EE h

FF i - GGb ... , I11; each of them is equal to the fifth power of the
abscissa corresponding to it (remember that we have assumed
y = x 5

). Hence

CA = OC5 = as, EEl = OE 5 = a5q5, FF 1 = OF 5 = a5ql 0 ,

GG1 = a5
q l 5, ... , III = 01 5 = a5qS(n - l ).

We see that the altitudes of the rectangles also form a geometric
progression with the common ratio q5 (= qk).

Since the bases of the rectangles form a progression with
the common ratio q and the altitudes form a progression with the
common ratio q5 (= qk), the areas of the rectangles must form a
progression with the common ratio qq5 = q6 (= qk+ 1):

CEo CA = a(q - l)a 5 = a6(q - 1);

EF.EE 1 = aq(q - 1}a5q5 = a6q6(q - 1);

FG· FF 1 = aq2(q - l)a 5ql 0 = a6 q12(q - 1);

ID· III = aq"-l (q - 1)a5q5(n- l ) = a6
q 6(n - l) (q - 1).

Therefore the sum of the areas of the rectangles equal to the
area of the stepped figure is the sum of the geometric progression
with the first term a6(q - 1), the last term a6q6(n- 1) (q - 1) and
the common ratio q6:

a6
q 6<n- l ) (q _ 1)q6 - a6 (q - 1)" . q - 1

q6 _ 1 = [(aqn)6 - a6] q6 _ 1 =

b6
- a6

= q5 + q4 + q3 + q2 + q + 1

(
q6 _ 1

we have used the equalities b = ao" and --- = q5 + q4 +
q - 1

+ q3 + q2 + q + 1).
5. Let us increase indefinitely the number of the rectangles n.

Since the bases of the rectangles form an increasing geometric
progression (q > 1), the first one must be the smallest. But the sum
of the lengths of all the n bases is equal to b - a; therefore
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b-a . b-a
the length of CE is less than --,1. e. aq - a < --, whence

n n
b-a

q-l<--.
na.

The right...hand side of the last inequality tends to zero when n
increases indefinitely; since the left-hand side is positive it must
tend to zero too, that is, q tends to unity.

This implies that q2, s'. q4 and q5 also tend to unity,
the sum q5 + q4 + q3 + q2 + q + 1 tends to 1+ 1+ 1+ 1+ 1+ 1 =
= 6 and, hence, the whole area of the stepped figure, equal to

b6 - a6

tends to the limit

The required area of the curvilinear trapezoid must equal that
particular limit:

b6
- a6

s= --6--.

We have obtained this result for k = 5. If we were to make these
calculations in the general case for any natural k, we would
obtain

k + 1

bi + 1 _ ak+ 1

S=-----

Thus we have proved that the area of the curvilinear trapezoid
bounded above by the arc of the graph of the function
y = xkand located between two ordinates with the abscissas a and b

. b"+1 - a"+ 1

IS equal to k + 1 .

k + 1

6. We obtained the results of the previous section assuming
that 0 < a < b, i. e. that the curvilinear trapezoid lies to the right
of the y...axis. If a < b < 0, the proof is carried out in the same way.
However, assuming the common ratio q of the progression to be
positive and greater than unity as before, we must now take b as
the first and a as the last term of the progression (since
lal> IbO. Repeating the computations we receive the same result:

bk+ 1 _ ak+ 1

s=

15



If k is an odd number, then k + 1 is even and, hence, bk + 1

and ak + 1 are positive numbers, the first number being less than the
second. Therefore, in this case S is expressed by a negative
number. This is clearly to be expected, since for odd k the
corresponding curvilinear trapezoid lies below the x-axis (see the
left-hand parts of Figs. 11 and 13).

Let us return to the case 0 < a < b. If we consider b to be
invariable and make a tend to zero, then the -curvilinear
trapezoid will extend to the left, and for a equal to zero
will turn into a curvilinear triangle OBD (Fig. 15) (we assume
that k ~ 1). It is obvious that for a tending to zero the area of the

y

K

L

Fig. 15

curvilinear trapezoid will tend to the area of the curvilinear
triangle. Indeed, the difference between the second and the
first area will be less than the area OeAL, which itself tends to zero.
On the other hand, for a tending to zero, the area of the

b"+l .
curvilinear trapezoid tends to --, as is seen from the obtained

k + 1
formula. Therefore the area of the curvilinear triangle ODB is

bk+ 1

equal to k + l' i. e. it is k + 1 times less than the area of the

rectangle ODBK, or, the same thing, k + 1 times less than the
product of the "legs of the right-angled triangle" ODB (we have
put inverted commas since we speak here not of the ordinary
triangle, but of the curvilinear one). For k = 1 we have a function
y = x, with the graph becoming a straight line (see Fig. 9)
and the triangle an ordinary right triangle with its area equalling

1 1 .
1+1="2 of the product of the legs.
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We obtain analogous results if we proceed from the assumption
a < b < 0 (the curvilinear trapezoid is located to the left of Oy).
Taking a to be invariable we make b tend to zero; then the expression
blc+ 1 _ ak + 1 ak,+l

k + 1 tends to the limit - 1+1. This will be exactly the

area of the corresponding curvilinear triangle.
A curvilinear triangle can be considered as a special case of a

curvilinear trapezoid. From .what we have established it follows
that the formula

remains valid for a curvilinear triangle as well. We need only put
in it a = 0 (if the triangle lies to the right of Oy) or
b = 0 (if the triangle lies to the left of 0 y).

7. Let us return to the general problem of the areas of curvilinear
trapezoids. Let ACDB be a curvilinear trapezoid bounded by the arc

y

o

Fig. 16

AB of the graph of the function y = j(x), two perpendiculars AC
and BD dropped from the end points of the arc to the
x-axis, and by the segment CD of the line Ox intercepted
by the feet of the perpendiculars (Fig. 16). If OC = a and OD = b
with a < b, then the area ACDB is designated

b

Jf(x)dx.

Every detail in this designation has a definite meaning, Here we have
a function f(x) whose graph is the upper part of the boundary
of the curvilinear trapezoid, and also the numbers a and b,

17



specifying the right part and the left part of the boundary.
The designation (*) defines the method of seeking the area of
ACDB; this method was given in Sections 2 and 3 and involves
calculating the sum of the areas of the rectangles constituting
the stepped figure and passing to the limit. The sign J is
the extended letter S, the initial letter of the Latin word summa,
sum. The unusual shape of the letter S implies that the calculation
of the area of the curvilinear trapezoid involves not only summation,
but must also .include the passage to the limit. To the right
of the sign S, which is called the integral sign (from the
Latin integer meaning full, entire), is the productf(x) dx. It represents
the area of the rectangle with altitude f(x) and base dx. The
letter d standing before x is the initial letter of the Latin word
differentia meaning difference; dx denotes the difference between
the two values of x (see Fig. 16): dx = x' - x, The number a
is the lower limit and b the upper limit of the integral (here
the word "limit" means "boundary").

Thus, the designation (*) for the area of the curvilinear
trapezoid carries, on the one hand, all the information concerning
its form and dimensions (given by the numbers a and b and by
the function f(x)), and, on the other hand, contains within it the
method of seeking the area of the trapezoid by calculating
the areas of the rectangles with altitudes f(x) and bases dx, by
summing these areas and by passing to the limit (the integral
sign shows that the summation and passing to the limit must be
carried out). The designation (*) should be read as "the integral
from a to b, f of x dx". We repeat once again that this
designation expresses the area of the curvilinear trapezoid ACDB.
Using the new designation we may express the results of Section 5
as follows:

b b"+1 _ a"+ 1
Jxkdx= -----
a k + 1

(k is an integra) nonnegative number). The last equation should
be read as "the integral from a to b of xl' dx is equal to the
difference b"+1 and ak.+ 1, divided by k + 1".

8. Let us define some simple properties of integrals. Obvious
ly the area ACDB added to the area BDD'B' yields the
area ACD'B' (Fig. 17). But the first area is equal to
bee

S.f(x)dx, the second to Jf(x) dx, and the third to Jf(x) dx;
b

18



bee

therefore we have Jf(x)dx + If(x)dx = If(x)dx. Here a < b < c:
Q . b Q

now if a < c < b (Fig. 18), then, taking into account that the areas
ACD'B' and B'D'DB together yield the area ACDB, we obtain

ebb

If(x)dx + ff(x)dx = Jf(x)dx.
Q C Q

b

In introducing the concept of the integral Jf(x)dx in Section 7
a

we assumed that a < b, i. e. that the lower limit is less than the

y

c

o o x o a COD
b

x

Fig. 17 Fig. 18

upper limit. That is why the area BDD'B', where OD = b
c

and OD' = c for b < c (Fig. 17), was written as Sf(x)dx
b

b

and for b > c (Fig. 18) as If(x)dx (every time the lower limit

is less than the upper limit). In the first case the difference
c b c

between the integrals Jf(x)dx - Jf(x)dx was equal to Jf(x)dx, and
Q Q b

b

in the second case to Jf(x)dx (we have made use of the equalities

of the integrals written above). To be able to express both cases
by the same formula we shall agree that for b > c we may write

c b

Jf(x) dx = - Jf(x) dx.
b

19



In other words, we shall now include an integral whose lower
limit is greater than the upper limit, meaning by this the area of a
curvilinear trapezoid taken with the opposite sign. Then, instead
of the two different formulas

c b c

Sf(x) dx - Sf(x) dx = Sf(x) dx (b < c)
a Q b

and
ebb

Jf(x)dx - Jf(x)dx = - Jf(x)dx (b > c)
Q Q

we shall write in all cases
c b t

Sf(x)dx - Jj(x)dx = Jf(x)dx (b =1= c).
Q. b

For b == c the left..hand side vanishes; therefore it is legitimate
b

to consider the integral Jf(x) dx, assuming it to be equal to zero.
b

Thus, irrespective of whether b < C, b > c or b = c, we can
use the formula

c b t

Jf(x) dx - Jf(x) dx = Jf(x) dx
Q Q b

in all cases. This formula can also be written as follows:
bee

Jf(x)dx + Jf(x)dx = Jf(x)dx.
a b a

k + 1

We leave it to the reader to verify, with the results established
in this Section, that the formula

b bk + 1 _al+1
Jx"dx= ----
Q

is valid for any a and b (and not only for 0 ~ a < b or
a < b ~ 0).

9. Assume that f(x) is written as the sum or the difference of
two functions:j(x) = g(x) + h(x) or f(x) = g(x) - h(x) (for example,
f(x) = x 3

- X
S). Then the integral of f(x) can be replaced by the

sum or the difference of the integrals of the functions g (x) and

20



h(x):
b b b

Sf(x)dx = Sg(x)dx + Jh(x)dx
II II a

(or !!(X)dX = !g(x)dx - !h(X)dX). For example,

b b b b4 _ a 4 b6 _ a6

J(x3-xS)dx=Jx3dx-Jxsdx= - 6
o a a 4

Let us prove this property of integrals, taking the case of the sum.
Letj(x)=g(x)+h(x); the graphs of the three'functions g(x), h(x)

'and f(x) are depicted in Fig. 19. We have to prove that
b b b

Jf(x)dx = Jg(x)dx + Sh(x)dx,
II II "

that is, that the area of ACDB is equal to the sum of the areas
of AtCtD1B1 and A2C2D2B2• Let us divide the segment of the
x-axis between the points x = a and x = b into parts and construct
the corresponding stepped figures for the three curvilinear
trapezoids depicted in Fig. 19. It is evident that the area of each
rectangle in the lower part of the figure is equal to the sum of the
areas of the two rectangles shown in the two upper parts of the
figure. Therefore the area of the lower stepped figure is equal
to the sum of the areas of the two stepped figures lying
above. This connection between the areas of the stepped figures
will remain no matter how we divide the interval on the x-axis
between x = a and x = b. If this interval is divided into an
indefinitely increasing number of parts whose lengths tend to zero,

b

then the lower area will tend to the limit Sf(x) dx and

the two parts lying above will tend to the limits

b b

Jg(x)dx and Jh(x)dx.
II II

Since the limit of the sum is equal to the sums of the limits,
b b b b

Jf(x)dx = J[g(x) + h(x)]dx = Jg(x)dx + Jh(x)dx;
II II II II

and that is what we had to prove.
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In just the same way it can be proved that

" b b

J[g(X) - h(x)ldx = Jg(x)dx - Jh(x)dx.
Q a a

It is easy to see that this property of integrals is also valid
when f(x) is the sum of the greater number of summands. For

c,
o a

0,
b x

x

Fig. 19

example, if f(x) = g(x) - h(x) + k(x), then
b

J[g(x) - h(x) + k(x)]dx =

b b

= J[g(x) - h(x)]dx + Jk(x)dx =
ClI ClI

b b b

= Jg(x)dx - Jh(x)dx + Jk(x)dx.
ClI a ClI
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10. We have also to find the connection between the integrals
b b

Jf(x) dx and JCf(x) dx,
Q Q

where C is some (constant) number; for instance, we have to find
b b

the connection between the integrals Jx 3 dx and J2x.3 dx. Let
Q

us show that
b b

JCf(x)dx = C Jf(x)dx,
Q Q

for example,
b b b4 _ a4

J2x 3 dx = 2Jx 3 dx = 2---
a a 4

To simplify the reasoning we shall give to C a definite numerical

1
value, say, C = 2. Now we have to compare the integrals

b

!f(X)dX and f ~ f(x)dx.

Fig. io depicts the curvilinear trapezoids whose areas are represented
by these integrals. Let us divide the segment of the x-axis
between the points x = a and x = b into a number of parts and
construct the corresponding stepped figures. It is easy to see that
the area of each rectangle in the lower part of the figure is equal
to half the area of the rectangle lying above it (from the upper
part of the figure). Therefore the area of the lower stepped
figure is half that of the upper stepped figure. Passing to the
limit as we did in Section 9, we conclude that the whole area
of the lower curvilinear trapezoid is also half the area of the upper
curvilinear trapezoid:

b

flIb
2"f(x)dx = 2"!f(x)dx.

In our argument the number C was positive; if we assume C
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1 .
to be negative, for instance, C = - 2' then we have to replace

Fig. 20 by Fig. 21.
Comparing now, the area of ACDB with that of A"C"D"B'

we find that here, besides the variation in the absolute value"of the

y

Fig. 20

area (its decrease by half), the sign changes too. Hence,

bf(- ~ y(X)dX = - ~ !!(X)dX.

It is clear that we assumed C = ± ~ only for clarity. In general.

for any C, the equality

b b

JCf(x)dx = C Jf(x)dx
a a

is valid.
To show how the properties of integrals discussed in this

and in the previous section can be used, let us compute "the integral
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1

J(3x2
- 2x:'" l)dx. We obtain

°
1 1 1 1

J(3x2
- 2x + l)dx = J3x2dx - J2xdx + JIdx =

o 0 0 0

1 1 1

= 3Jx2 dx - 2Jx dx + JX
Odx =

000

y

Fig. 21

11. Let us consider the function

-1 1y=x =-
x

Its graph is referred to as an equilateral hyperbola; it is shown
in Fig. 22. If the formula for the area of the curvilinear
trapezoid

"
derived earlier for the case k ~ 0, is applied to this case,
then, noting that k + 1 = 0, b"+1 = a"+1 = 1, we obtain in the right-

hand term the meaningless expression ~. Hence our formula

cannot be used in the case of k = 1.
Although the formula cannot be employed for the calculation

b

of the integral JX-I dx, we ,can nevertheless study some properties
, a

of this integral.
We can prove if a and b are increased or decreased
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x

b
a

o

the same number of times, i. e. are multiplied by the same q > 0, a
new curvilinear trapezoid with the same area results. Needless to say
we prove this property assuming that the curve whose arcs bound the
curvilinear trapezoids from one side is an equilateral hyperbola and

y

Fig. 22

not some other curve. In other words,
bq b

Jx-1dx = Jx-1dx,
lUI a

for any q (q > 0).
To make it easier to follow the proof let us give to q a

definite numerical value, for example q = 3. Fig. 23 depicts two
curvilinear trapezoids ACDB and A" C'D'B" corresponding to this case.
The first trapezoid is narrower but higher, the second wider but
lower. Let us prove that the increase in width in the second
case is compensated for by the decrease in height, so that the
area remains the same. To carry out the proof let us divide the first
trapezoid into several narrower trapezoids and replace each of the
latter trapezoids by a rectangle (Fig. 23). If the abscissa of each
point of the stepped figure ACDB constructed above is trebled and
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the ordinates are leftunchanged, a figure A'C'D'B' results whose area is
three times as large, since each rectangle becomes three times as
wide. But the ends of the ordinates are no longer located
on our hyperbola. Indeed, this hyperbola is the graph of the inverse

proportion y = ~, and to keep the points on the hyperbola the
x

ordinate must be decreased by the same number of times as
the abscissa is increased. If all the ordinates of the figure
A'C'D'B' are decreased three times the resulting figure is
A"e'D'B", which is a curvilinear trapezoid bounded above by the arc

of the hyperbola y = ~ a~d from the sides by the ordinates
x

y

x

Fig. 23

constructed for x = 3a and x = 3b. The resulting rectangles have
bases three times as large as the original rectangles and altitudes
three times as small. Hence their areas are the same as those of the
original rectangles. Consequently, the areas of the two stepped
figures are identical, as are their limits, i. e. the areas of the
curvilinear trapezoids:

4b b

Jx- 1 dx = Jx- 1 dx.
411 II

We have proved this property assuming that a < b. But it is also
true for a = b and a > b. Indeed, if a = b, then aq = bq and both
integrals vanish, and hence the equality is not violated. If,
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however, a > b, then aq > bq; in this case we have the equality
a4 a

JX-I dx = JX-I dx
bq b

(now b < a and therefore b and a exchange the roles they play).
b a

But we agreed in Section 8 that Jf(x)dx means - Jf(x)dx for
a b

a > b. Consequently

btl atJX- 1 dx = - Jx- 1 dx,
GIl btl

b a
Jx- 1 dx = - Jx- 1 dx.
a b

Since the right-hand sides of these relations are equal, the
left-hand sides should be equal tOO:

b4 b

JX- 1 dx = JX- 1 dx.
aq a

Thus, the relation we have proved remains valid irrespective of
whether a < b, a = b or a > b.

b

12. Now let us assume a = 1 and consider JX-I dx. If
1

b > 1, the integral represents the area of the curvilinear trapezoid
ACDB (Fig. 24). Now if b = 1, it turns into zero, and, finally,
if 0 < b < 1, then the lower limit of the integral is less than the
upper limit and we obtain

b 1

Jx- 1dx = - Jx- 1dx.

1 . b

This means that in this case the integral differs from the area of the
curvilinear tra~zoid B'D'CA only in its sign (Fig. 25). In any

b

case, for every positive value of b the integral JX-I dx has
. 1

quite a definite value. It is positive when b > 1, equal to zero
when b = 1 and negative for b < 1.

b

It is evident that the integral JX-I dx is a function of b.
1

This function plays a very important role in mathematics; it is
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called a natural logarithm of the number b and is designated In b.
Here I and n are the initial letters of the Latin words
loqarithmus - logarithm, and naturalis - natural. Thus,

b

JX- 1 dx = In b.
1

Let us discuss some properties of natural logarithms. First of
all we have

In b > 0 if b > 1; In 1 = 0; In b < 0 if b < 1.

Next we derive the main property of a logarithm, the fact that
the logarithm of a product is equal to the sum of the logarithms

y

y

Fig. 24

x

Fig. 25

of the factors, for instance, In 6 = In_2 + In 3. In the general case

In(bc) = In b + In c,

that is
be b c

Jx- I dx = JX-I dx + JX-I dx.
III

Indeed, according to what was proved above
c qc

Jx- I dx = Jx- 1 dx
1 q

for any q > O. Let us take q = b; then we shall have
c be

Jx - I dx = Jx - 1 dx.
1 b
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Therefore
b c b oc
JX- 1 dx + Jx" 1 dx = Jx- 1 dx + Jx- 1 dx.
1 lIb

But the last sum can be replaced, according to the property derived
be

in Section 8, by the integral Jx" 1 dx. Hence we have
1

b c be

Jx- 1 dx + Jx- 1 dx = JX-I dx,
1 I 1

just what we had to prove.
This property allows us to derive some corollaries. Let b > 0;

then, according to the property proved above,

In 1 = In(b ~ )= Inb+ In ~ ;

since In 1 = 0, Inb + In ~ = 0, whence

1
Inb = -Inb.

1
For example, In"2 = -ln2. Next we have

c (1) 1lOb = In Cb = In c + Inb = In c - Inb

if b > 0 and c > 0; in other words, a logarithm of a quotient
is equal to the difference of the logarithms of the divident and the
divisor.

The main property of the logarithm was formulated for the product
of two factors, but it is valid for the product of any number of
the factors as well. Thus, for instance, if we have three factors,
then we obtain

In(bcd)= In [(bc)d] = In (be) + Ind =
= (Inb + Inc) + Ind = Inb + Inc + Ind.

Evidently, whatever the number of the factors, the logarithm of
their product is always equal to the sum of the logarithms of the
factors. .

Let us apply this property to the logarithm of a power with the
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integral positive exponent k. We have

Inb" =,,In(bb ... b) = lob + lnb + ... + lob = klnb.
k times k times

For example, In 16= 1024 = 4102.
. "
Let c = Vb; then cf =·b and consequently

Inb = ln c" = kine = kin Vb.
whence we have

For instance

p

If c = bq, where p and q are positive integers, then, by the
properties proved above,

L W lipIn b q = In b" = -In bP = -. p In b = -In b.
. q q q

Hence, the property

In bIt = kIn b

is valid not only when k is a positive integer, but also when k is a

fraction in the form L.
q

It is easy to see that the same property. is valid for a negative
k as well (integral and fractional). Indeed, if k < 0, then - k > 0
and we have

1
Inb"=ln b- k = -lnb-"= -(-klnb)=klnb.

Finally, the same property is valid for k = 0 too:

In bO = In 1 = 0 = o· In b.

Thus, for any rational k (positive, equal to zero or negative,
integral or fractional) it is true that

lnb" = klnb.
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It would also be possible to prove that this relation is true for
an irrational k; for example,

In bV2=' V2ln b.

We shall accept the latter statement without proof and shall
use the following property: the natural logarithm of a power is equal
to the exponent multiplied by the natural logarithm of the base of the
power, for all possible values of the exponent k, both rational
and irrational.

13. Let us compute some logarithms. Perhaps we should calculate
In 2, i. e. find the area of the curvilinear trapezoid ACDB depicted
in Fig. 26a. We divide the line segment CD into ten equal parts
and draw the respective ordinates: K1Lh K 2L2 , ••• , K 9Lg • To find

y

o

(a)

x

y

o

(b)

Fig. 26

the best approximation to In 2, we replace each of the ten resulting
narrow curvilinear trapezoids not by a rectangle as we did before, but
by an ordinary, i. e. rectilinear trapezoid. To do this, we connect
point A with L 1, point L 1 with L 2 , and so on, ... , 1J9 with B
by line segments. In Fig. 26a it is difficult to distinguish between
ordinary and curvilinear trapezoids; to make the distinction more
visible we increase Fig. 26b in scale. The area of each trapezoid
is equal to the product of half the sum of the bases by the
altitude; but in our case all the altitudes are equal:

CK 1 = K 1K 2 = ... = K 9D = 0.1.
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Therefore, the areas of the trapezoids will be as follows:

AC+KILI .01' ~~~2L2·.01 . . KgL~_~YD .01'2 . , 2 .... , 2 ' \

the sum of these areas is equal to

O1 (AC + KILd + (KILl + K 2L2 ) ~_~ ..._~~(Kg~?_~_ ..1!.Pl
. 2 '

or to

0.1 (0.5AC + KILl + K 2 L2 + ... + K 9Lg + 0.5 BD).

It remains only to draw the reader's attention to the fact that
all the bases of the trapezoids are the ordinates of the graph

of the function y = ~ corresponding to the following abscissas:
x

1; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.

1 .
K2L2 == iT = 0.833;

1«.i., == -1~5 = 0.667;

1
KsL g == -1~8 =: 0.556;

1
BD = 2 == 0.500.

Therefore

1 1
AC = T = 1.000; KILl == U' == 0.909;

1 1
K 3L3 = IT = 0.769; K4L4 == T4 == 0.714;

K6L6 = /6 = 0.625; K 7 L 7 = 1~7 = 0.588;

1
K9Lg = 19' == 0.526;

Consequently, the sum of the areas of the trapezoids is equal to

0.1(0.500 + 0.909 + 0.833 + 0.769 + 0.714 + 0.667 +
+ 0.625 + 0.588 + 0.556 + 0.526 + 0.250) = 0.6937.

If we look more carefully at Fig. 26 we shall see that the sum
of the areas of these trapezoids gives a value somewhat greater
than that of. the area of the curvilinear trapezoid. This means
that we have found an approximate value for In 2 exceeding
the real value (a major approximation], i. e. that In 2 is somewhat
less than 0.6937.

Later we shall acquaint ourselves with another method of cal
culating logarithms which will make it possible to obtain, in
particular, In 2 with a higher degree of accuracy.

; 1111.-).'
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ttL {{ the abscissas are laid off not from the point 0 but
;:'rOfP : he point C (Fig. 27) and the new abscissas are denoted
'~h :J.~~ letter t, then the connection between the new and the old
":'··~l:~~:·~~tS of one and the same point will be

).: ::= 1 +. t.

This '.»nnection 'will be true for any point if we assume that t >.0
W~~f'~. v > 1, and t ~ O~vhen .l -~.:: L all substituting 1 + t for x the

Fig. 27

1 1
y ~ -.~- becomes y ::::: "1-+-i-', but the graph remains the.

same. Anything new resulting from the introduction of t refers only
.~(~ tic origin (C instead of 0), and, hence, to the new axis Cj
.paraltel to Oy)~ the curve itself remains unaltered. The area
A(~L)B does not change either. But when we took x as the abscissa
this area was expressed by the integral

1+13

J x-- 1 dx = In(1 + ~)
1

(here ~ = CD).
~~~ ow when we take t for the abscissa, the same area is expressed

p

~~-Y .he integral J(1 + ty- 1 dt. Comparing the two integrals we obtair,
o ~

In(1 +~) = J{l + t)-ldt.
o

'"" "~·,c.



Let us now note the following identity:

1.- t"1 - t + t 2 - (3 + ... _ t2 n - 1 :=: _

I + t .

We can see it immediately if we note that the left-hand side
contains a geometric progression with 1 as its first term, - t as
the common ratio and - t 2n

- 1 as its last term. This identity
implies

1 t 2n

-- = 1 - t + (2 - t 3 + _ t 1 n - 1 +- __
1+t ... l+t'

Therefore

10(1 + /3) = 1[1 - t-+- t2
-- t3 + ... - t2 n

-
1 + -/£--ddt.

Now a more complex and cumbersome expression containing the
sum of several summands has appeared under the integral sign
instead of (1 + t)- 1. \Ve have learned by now that the integral
of a sum or a difference of functions is equal to the sum or the
difference of the integrals of these functions. Hence,

p p ~ p
In(1 + ~) = J1dt -- Jt dt + J(2 dt - Jt 3 dt + ...

o 0 0 0

p

P f t
2 11

... - St 2 n
- 1 dt + -1-- dt.

o + t
o

We are now able to compute each of the integrals on the right
hand side except for the last integral. So we can write

p p ~2 P ~3

J1dt = 13, Jt dt = T' Jt
2

dt = -3·'
o 0 0

P A4 P 1l2n

Jt 3 dt = ...t'4-'·.. , Jt2 11
- 1 dt = ~2-.

o 0 n

It follows that
p

(

~2 ~3 ~4 ~ln) f t
2n

10(1 +~) = ~ - T + -3-- 4 + ... - ~ + T+t dt.

o
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The expression in the parentheses on the right-hand side of the
equation is a polynomial of degree 21l arranged according to the
increasing powers of ~. If the value of ~ is known, and if,
in addition, n is taken to be a positive integer (it can be
arbitrary), then the value of this polynomial can easily be computed.
Difficulties arise only when we begin to compute the integral
p

r1t:n

r- dt. We shall prove that by making n sufficiently large we
.J

o
can make the integral arbitrarily small for - 1 < ~ ~ 1. If this
is so, then in computing In(I + ~) we can neglect the last integral;
this will result in no more than a negligible error. Consequently
we obtain the following approximate equality:

~2 ~3 ~4 p~n

10(1 +~) ~ p- 2 + -3-- -4 + ... - 211'

15. To estimate the error of this approximate equality we must

consider the deleted integral J1t:~i-dt. Assume, first, that

o
o< P~ 1. Then, within the limits of integration, ( remains positive
and, consequently,

(2n

0<-- < t".
1+(

t 2n

This means that the graph of the function y = -1-- lies below
+t

that of the function y = r2n (Fig. 28); therefore, the area CBA 1

is less than the area CRA, i. e.

p

f
t2n 13 ~2n+t

--dt < Jt2n dt = -----.
1 + t 0 2n + 1

o

Thus, the error of the approximate equation derived above is
~2n+ 1 •

less than 2n + 1; SInce 0 < ~ ~ 1, this error can be made

arbitrarily small when n is sufficiently large. Take, for instance,
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~ = 1; in this case the formula derived above will yield

1 1 1 1 lIt
In 2 ~ 1 - 2 + 3 - 4 + 5 -6 + ...+ 2n - 1 - 211'

. h I 1 .
Wit an error ess than 2n + 1 . If we use this method to calculate

In2 with an accuracy to within 0.001, then we must assume
1

--- to be less than 0.001, i. e. 211 + 1 > 1000; this condition
2n + 1

y

c

Fig. 28

can be satisfied by putting 2n = 1000. But in this case the left-hand
side of the equation will contain 1000 terms whose sum must be
computed. It goes without saying that this is a difficult job.
We shall soon learn how we can do it with the aid of another
formula for In2.

t6~ Let us again consider the integral

putting - 1 < P< O. We know that

f
ll t2n

--dt
1 + t '

o

but now
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o

The integral f lC:d~- is equal to the area of the figure ABCK

p

shown hatched in Fig. 29. This figure is located above the line Ct,

t 1n

since y = -1-- > 0 for t > -1. Consequently the area of ABCK
tt

o

f t2ndt
is a positive number, i. e. the integral

1 + t
e

is a positive

A' y

c

Fig. 29

p

f t2n dt
number. It differs from the integral -1-- only in sign and is

+t
o

therefore equal to the absolute value of the latter:

°f~=lfP~1·1 + t 1 + t
p 0
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Further, let us note that for t > p and n-> - J the Inequ.;~·u~~-'t·

1+1>1-t-~>G

holds, and hence,
1 1---- < ----

1+t 1+6

and
(2" ,?n

---- < --_.._-"._--
t + t 1 + r3

t'J.1l

This means that the graph of the function r :.:-:. -f"~+~-t- lies bl"~k:\.)"·

t 2 n

the graph of the function y =-.;: l'-+1i in the interval ~ -:: : <.

(Fig. 29). Therefore the area of the figure A.BCK is Jess than ~r~jH

of ABeL:

It is easy to calculate the right-hand side of the inequality:
o

f 1 1 0

T+Tt2ndt = -. + ~ tt
1 ndt =

p

1 02 " + 1 _ B2n + 1 ~2P1+ J

t~- ..--.----.z-n-.-t -1---- == -- (2n+l)r"'-~~-"m

(this is a positive number since ~2" ~ 1 < 0, 1 + P> 0 <:Hl:J

2n + 1 > 0). It follows that

f}

f (2" dt
And so by deleting the term 1+[' in

o
10(1 +~) we make an error less in

the expression for

absolute value than
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p2n+ 1

- -(2n + 1)(1 + ~) (- 1 < ~ < 0). It tends to zero for indefinitely

increasing n.
Thus the approximate formula

~2 ~3 ~4 ~~n
10(1 +~) ~ ~ - 2 + 3- 4 + ... - -~

IS valid with an accuracy to within the factor
~2n+ 1

(2n + 1)(1 + p) for - 1 < ~ < O.

Let us make, for instance, ~ = - ~ ; in this case the error of
the approximation will ·be less than

22~+1 :[~ (2n+ I)J= (2n+\)22n'

If we take n = 4, the last fraction will be equal to

1 1 1 hi hat wi h hi d--- = -.---- = -- < 0 0005 T IS means t at Wit t IS egree9 . 28 9 . 256 2304 .. L

of accuracy we can write

1 1 1 1 1 1
In"2~ -"2- 22.2-- 23.3 - 24.4 -25~-

1 1 1
- 26.6 -~-~.

The requisite calculations yield

1 1 1 1
2=0.5000; 22.2 =0.1250; ~=O.0417; 24.4 =0.0156;

1 1. 1 1
~ == 0.0062; 26.6 = 0.0026; 27.7 = 0.0011; 28.8 = 0.0005

and we obtain

1
In2 ~ - 0.6927 ~ - 0.693

with an accuracy to within 0.001 (we take into account that the
formula itself could involve an error of up to 0.0005, and, in
addition, an error up to 0.00005 could arise when we reduce
each of the eight summands to a decimal fraction).
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Since In+= - In 2, it follows that

In2 ~ 0.693.

If we assume ~ = - ~ in the approximate formula for

In (1 + ~), we can use the same method to calculate

1 1103 and, consequently, In 3 = - In3 as well. In general, if we

assume ~ = - k ~ 1 we obtain In (1 - k ~ () = In k: 1 and,

consequently, In (k + 1) = - In k : 1-' However, this method of

computing logarithms is still very cumbersome. For instance, if we
intend to calculate In 11, then taking. k + 1 = 11, i. e. k = 10,

we should have P= - ~~, in which case the error in the

approximate formula will be less than

(
10 )2n+l . ( _~)__11._ (~)2n+l

11 .(2n+ 1) 1 11 - 2n+ 1 11

We have:

10 ( 10 )2 ( 10 )4 (10 )81T ~ 0.91; 1T ~ 0.83; 1T ~.().69; 1T ~ 0.48;

( ~~ Y6 ~ 0.29; ( ~~ J2 ~ 0.08; ( ~~-r4 ~ 0.006; ( ~~rs
~ 0.005.

So we see that only by taking 2n + 1 = 65 can we guarantee
that the error in the approximate formula for computing

1 1 'Il 11n 11 WI be less than 65' 0.005 ~ 0.00 1.

It is evident that the computation of In*in this case will be

tedious, since we have to calculate the sum of 64 terms:

_~_ ~_(~)2 _~ (~)3 _ __~(~_.)64
11 2 11 3 11 . . . 64 11 .
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17. The conclusions we have come to concerning the approximate
formula for In(1 +~) force us to look for another formula.
requiring fewer numerical calculations. Such a.lormula does exist,
and to obtain it we take an arbitrary positive integer k and put

1
~ = 2k + 1 . We then have

In(1 + 2k~ l)~ 2k~ 1 2(2k~ W + 3(2k~ 1)3--

1 1 .1
4(2k + 1)4 + ... + (2n - 1)(2k+ 1)2n-1 - 2~(2k + 1)2-1;-'

The error in this approximate equality is less than

1
(2n+l)(2k+l)2n+l. Now let us take a negative P equal

to - 2k ~ 1-· This time we obtain another approximate equality

( 11)' 1 1 1
In I - 2k + 1 ~ - 2k +T - 2(2k + W - 3(2k :.t1j3- -

1 1 1
- 4(2k + 1)4 - (2n - 1)(2k+ 1)2n-1 2n(2k +-1Yn~

yielding In (1 - 2k ~ .-) with an error less than

(2k+~)2n+l :[(2n+l)(1- 2k~1)J=
2k + 1 1 1

= ~. 2n + 1 . (2k + 1)2n+C'

Subtracting the second approximate equality term by term from the
first we obtain

In(t + __1)-In(1 __1_) ~
2k+l 2k+l

2 2 2
~2k+ 1 + 3(2k+ 1)3 + 5(2k+ 1)5 + ...

2
... + (2n - 1)(2k+ 1)2n-1
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The error in this approximate equality does not exceed, in
absolute value, the sum of the errors of the formulas for

In (1 + 2k ~ 1 ) and In (1 - 2k ~ 1 ). and so it is less than

1 1 2k + 1 1 1
2n + 1 . (2k + 1)2n+" +~. 2n + 1 . (2k + 1)2n+ 1

4k + 1 1 1---.---. <
- 2k 2n + 1 (2k + 1)2"+1

4k + 2 1 1 1
< 2k '2n+ 1 (2k+ 1)2"+1 = k(2n+ 1)(2k+ 1)2n·

We transform the difference between the logarithms, noting t.hat
it must be equal to the logarithm of the quotient. We receive

1

( ) ( )

1 + 2k + l-
In 1 + _1_ _ In 1__1_- = In

2k+1 2k+l 1
1- 2k+ 1

2k+2 k+l=In~ = In-
k-

= In(k + I)-Ink.

And so we have

2 2 2
In(k + 1)-Ink ~ 2k + 1 + 3(2f+lP-+ 5(2k + W +" ..

2
""" + (2n - 1)(2k + 1) 2n- 1 (*)

. h h 1 1 1
WIt an error less t an T" 2n+ 1 · (2k + l)ln "

This is precisely the formula we need. It allows In (k + 1)
to be calculated when In k is known. Making use of the fact that
In 1 = 6 and assuming k = 1, we can find In 2 with an error less
than

1 1
2n + 1 32" .

Let us take n = 5; in this case we can be sure that the error
will be less than 1/11· 1/3 1

0 = 1/(11 . 59049) < 0.000002,
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This yields
2 2 2 2 2

In2 = In2 - In 1 ~ 3 +3~ +~ + 7.37- + 9Y

with an error less than 0.000002. Converting each of the five
fractions into a decimal to six places (i. e. accurate to within
0.0000005) and adding we obtain the value of In 2 with an
accuracy to within 0.000002 + 0.0000005·5 < 0.000005:

In2 ~O.693146 ~O.69315.

Now putting k = 2 and n = 3 in formula (*) we receive

222
In 3 - In 2 ~ 5 + TIJ + TSS ~ 0.40546

6 1
with an error less than 1/2·1/7·1/5 = 14.15625 < 0.000005.

Therefore

In 3 ~ In 2 + 0.40546 ~ 1.09861.

Next we obtain In4 = 21n2 ~ 1.38630; assuming k = 4 and n = 3
in formula (*) we receive

2 2 2
In5-ln4~9+ 3.93 + 5.95 ~O.223144~0.22314

with an error less .than

1 1 1 1 < 0.0000001
4"7-· ¥ = 28·531441

and consequently

In 5 ~ In4 + 0.22314 ~ 1.60944.

Now we can easily find In 10:

In 10 = In 5 + In 2 ~ 2.3025Y.

And, finally, putting k = 10 and n = 2 in formula (*) we obtain

2 3
Inl1-lnl0~~+ 3.21 3 ~0.09531

(here the error in the approximate formula is less than
1/10·1/5 .1/21 4 ~ 0.0000001).
Therefore

In 11 ~ In 10 + 0.09531 ~ 2.39790.
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These examples are sufficient to understand how the table
of natural logarithms is constructed. This is the way to construct
the following table of logarithms of integers from 1 to 100, calculated
with an accuracy to within the factor 0.0005.

Table of Natural Logarithms (from 1 to 100)

n In n n Inn n In n n Inn n Inn

1 0.000 21 3.045 41 3.714 61 4.111 81 4.394

2 0.693 22 3.091 42 3.i38 62 4.127 82 4.407

3 1.099 23 3.135 43 3.761 63 4.J43 83 4.419

4 1.386 24 3.17R 44 3.784 64 4.159 84 4.431

5 1.609 25 3.219 45 3.807 65 4.174 85 4.443

6 1.792 26 3.258 46 3.829 66 4.190 86 4.454

7 1.946 ..27 3.296 47 3.850 67 4.205 87 4.466

8 2.079 28 3.332 48 3.871 68 4.220 88 4.477

9 2.197 29 3.367 49 3.892 69 4.234 89 4.489

10 2.303 30 3.401 50 3.912 70 4.248 90 4.500

11 2.398 31 3.434 51 3.932 71 4.263 91 4.511

12 2.485 32 3.466 52 3.951 72 4.277 92 4.522

13 2.565 33 3.497 53 3.970 73 4.290 93 4.533

14 2.639 34 3.526 54 3.989 74 4.304 94 4.543

15 2.708 35 3.555 55 4.007 75 4.317 95 4.554

16 2.773 36 3.584 56 4.025 76 4.331 96 4.564
17 2.833 37 3.611 57 4.043 77 4.344 97 4.575

18 2.890 38 3.638 58 4.060 78 4.357 98 4.585

19 2.944 39 3.664 59 4.078 79 4.369 99 4.595

20 2.996 40 3.689 60 4.094 80 4.382 100 4.605

18. We have seen that the logarithm of a product can be
found by means of addition, the logarithm of a quotient by means of
subtraction, the logarithm of a power by multiplication (by the
exponent), and the logarithm of a root by division (by the
index of the root). Therefore, if we have a table in which
logarithms are written next to the numbers (a table of logarithms),
then with the aid of that table we can replace multiplication
by addition, division by subtraction, raising to a power by
multiplication and obtaining a root by division, that is to say,
every time a more complex operation is replaced by a simpler
one: You can learn how to do it from a high school algebra
book so here we shall only consider a simple example.
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Say we want to calculate c = V2. Making use of the value
In 2 ~ 0.693 computed above let us divide it by 5 to obtain

In V2 = 1/5 In 2 ~ 0.139. It remains to find the number V2 by
its logarithm. Our table is not very convenient, for it contains
logarithms 0.000 (corresponding to the number 1) and 0.693
(corresponding to the number 2), the first being too small and
the second too large. From this we can only conclude that

1 < 0 < 2. But it can be noted that In(lOV2) = In 10 +
5

+ In V2 = 2.303 + 0.139== 2.442. In our table the nearest smaller
logarithm is 2.398 (== hi 11), and the nearest larger logarithm is

2.485 (= In 12),consequently 11 < ioV2 < 12. Noting that 2.442 lies
approximately between In 11 and In 12 (the arithmetic mean of

;h 5 ~
the last numbers is 2.441) we can put 10V 2 ~ 11.5, i. e. V2 ~
~ 1.15. To check the result obtained take note of the fact that

In(I00V2) = In 100 + In V2 = 4.605 + 0.139 = 4.744

and

In 115 == In 5 + In 23 == 1.609 + 3.135 == 4.744.

19. To construct the graph of the function y = In x, it is
necessary to choose coordinate axes and a scale unit and, then,
for every x (x > 0) mark off the value of In x on the line
perpendicular to the x-axis and raised from the respective
point on that axis. The end points of the perpendiculars obtained
for various values of x will be located on a curve constituting
the graph of the natural logarithm. The graph of the logarithm is shown
in Fig. 30a. Fig. 30b, located below, depicts In x as an area, so that
the two cases can be compared. Both figures are drawn to the same
scale. If we take one and the same value of x, we can show
that the number of unit squares contained in the area of the
curvilinear trapezoid ACDB in Fig. 30b is equal to the. number
of units of length contained in line segment K L shown in Fig. 30a.

Let us note that if 0 < x' < 1, then .

X'

In x' = f~ = - fdx ,
·x X

1 x'

that is, In x' is a negative number whose absolute value is equal
to the area of the trapezoid B'D'CA ~ therefore, for this case In x'
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will be shown in Fig. 30a by a line segment K'L' marked otT
downwards from the x-axis.

All the properties of the graph of the function y == In x follow
from the definition and the properties of the natural logarithm.
For example, In x is negative for x < 1, vanishes for x == 1 and
is positive for x > 1. Consequently, the graph of the logarithm
is located below Ox for x < 1, intersects Ox for x = 1 and is
above Ox for x > 1. Further, y = In x increases with increasing x.

y

J(

x

(b)

Fig. 30

This property is obvious when x > 1 (see Fig. 30b), but it is also
true for x == x' < 1. Indeed, if x' increases, remaining less than unity,
the absolute value of the area B'D'CA (Fig. 30b) decreases, and
this means that In x, which differs from that area only in sign,
increases. .

This increase in the logarithm is seen in the graph in the
form of a curve rising as if uphill from left to right. This
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hill, steep at first, becomes flatter and flatter. For greater clarity,
we shall call the graph of the logarithm depicted here a logarithmic
slope.

If we cut a horizontal path along the x-axis and proceed along
this path from the point 0 to the right, then, looking down,
we first see an infinite gulf with the logarithmic slope lost in its
depth. However, we need only to take a step equal to the unit oj
length to leave the gulf behind. Continuing our walk along the
path, with each step we find ourselves higher and higher on the slope.
Thus, after two steps (x = 2) our height will be In 2 = 0.693, after
three steps In 3 = 1.099, etc. Let us calculate how great the
increase in the height of the slope will be when after m steps
we take one more step. Since after m steps (a unit of length each)
the height of the slope will be equal to In m, and after In + 1
steps it will be In (m + 1), the increase in the height of the
slope corresponding to one step is

m+l ( 1)In(m + 1) - In m = In --m- = In 1 + -~- .

The greater the number of steps we take the less will be the

number J.._, the more 1 + ~ will approach unity, and the closer
m m

In (1 + ~) will be to zero. This means that the steepness of the

slope becomes less and less noticeable as we move to the right,
i.e. the logarithmic slope becomes indeed less steep.

The comparative flatness of the slope does not prevent it from
rising indefinitely, so that when we go sufficiently far along
the horizontal path the slope will rise above us indefinitely.

Indeed, after we make 2m steps the height of the slope will be
equal to

In 2m = mIn 2 = 0.693 m,

and for a sufficiently large m this number will be arbitrarily
large.

If instead of a horizontal path we cut some other straight
path with a rise, however slight (Fig. 31a), and travel along it,
then, sooner or later we shall reach the logarithmic slope,
and shall even leave it down below us when we rise further
upwards (Fig. 3Ib).

To be sure of this let us prove the following lemma: for any
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natural m there holds the inequality
4m

-2 ~4.
m

Indeed, when m increases by 1 the fraction 4~ increases, i. e.
m

4m 4m+ 1

-<----~
m2 (m+ 1)2

y

---
---

o

in x

(b)

xtan«

x

Fig. 31

this follows from the inequality

4m
+1 4m 4m2 (2m)2 (m + m )2

(m+ 1)2 : -;;j2 = (m + 1)2 = m + 1 = m + 1 ~ 1,

which holds for m ~ 1. This is why from among the fractions

41 42 4m

12' 12' ..., ni2' ...

the first always has the lowest value, i, e.

41 4m

12~ m2 ;

this is what we wanted to prove.
Now note that for each point on the sloping straight path

there holds the relation

y = x tan ex,
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where Cl is the angle of inclination of the path (ex is an
acute angle and, consequently, tan ex > 0). If we take x = 4m

, the
altitude of the slope of the path for this value of x will be
4m tan e, and the height of the logarithmic slope will equal
In (4m) = mIn 4. The ratio of the first height to the second
will be

4m

But according to what was proved above, --r- ~ 4, and therefore
m

the ratio between the height of the path and the height of the

4 tan ex .
logarithmic slope is not less than In 4 m, and for a sufficiently

large m this value can be made arbitrarily great. Consequently,
for x = 4m and a high value of m the rising straight path will be
considerably higher than the logarithmic slope (see Fig. 3Ib).

It is remarkable that the logarithmic slope has a rounded shape,
without any irregularities, and is convex throughout. This
property can be expressed in geometric terms: every arc of the graph
of the logarithm lies above the chord of that arc (Fig. 32).
Denoting the abscissas of the end points of an arbitrary arc

y

JC

Fig. 32

L 1L2 by XIX2 we can make sure that for the mean value of

Xl + X2 •
X = 2 a point on the arc L must indeed lie above the

corresponding midpoint of the chord M.
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In fact,

and

(as the middle line of the trapezoid), i. e.

NM = lnxi + Inx2
2

We have to prove that

1
Xl + X2 lnx! + Inx2

n 2 > 2

But we have

Let us note that

(~ - ~)2 = Xl - 2 VXtX2 + X2 > 0

(in case X t and X2 are positive numbers not equal to each other).
Therefore

next

and finally

The proof is complete.
Thus, whatever the arc of the graph of the logarithm, the point

of the arc corresponding to the arithmetic mean of the abscissas
of its end points always lies above the midpoint of the chord.
This implies that the graph of a logarithm can have no troughs.
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Indeed, if there were such a trough (Fig. 33), an arc would be
possible for which the above property would not hold (the
midpoint of the chord M would lie not below, but above the
corresponding point of the arc L).

Proceeding from the properties of logarithms, we could derive
some other interesting properties of the graph of a logarithm, but we
shall restrict ourselves to those just considered.

x

Fig. 33

20. We may encounter natural logarithms while solving many
problems in mathematics and physics which at first glance appear
to have nothing to do with the areas of curvilinear trapezoids
bounded by the arcs of a hyperbola. Here is one of the problems
of this kind studied by the eminent Russian mathematician
P. L. Chebyshev: he wanted to find the simplest formula possible
for an approximate calculation of all prime numbers not exceeding
some given (arbitrary) number n.

If n is not large, then the question as to the quantity of prime
numbers denoted by 7t (n) (here 1t has nothing in common with the
familiar number 3.14159...) is decided very simply. Thus, if
n = 10, the prime numbers not exceeding 10 are the following:
2, 3, 5,·7; there are four of them and consequently 1t(10) = 4.
If n = 100, then we make use of the familiar method known as
Eratosthenes' sieve and obtain 25 prime numbers: 2, 3, 5, 7, 11, 13,
17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97; consequently 1t (100) = 25. However for a large n the
problem becomes rather difficult. How can we calculate 1t (n), even
very approximately, when n is equal to a million, a thousand million,
and so on?

Chebyshev found that to calculate 1t (n) approximately it is
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sufficient to divide n by the natural logarithm of n:

n
1t(n)~-l-;nn

the relative error of this equality (the error measured in fractions
of the number 1t(n)) may be very large, but it tends to zero when n
tends to infinity. Chebyshev's approximation formula becomes very
convenient in the case of n equal to a power of 10 with a positive
integral exponent: n == let. Then we obtain Inn = In 1<Y' == kIn 10 ~
~ 2.303 k and, hence,

1<Y'
1t (1<Y') ~ 2.303 k .

Making use of the fact that 2.3~3 ::::: 0.434, we can obtain a

formula still more convenient for computations:

10k

1t(lct) ~ 0.434-
k-.

Thus, for k == 1 and k == 2 we find:

1t (10) ~ 0.434·10 = 4.34 (the correct result is 4),

It (I (0) ::::: 0.434· 1~ ::::: 21.7 (the correct result is 25).

If we continued the calculations we would obtain the following:

It (1000)::::: 0.434· 1~ ::::: 145 (the correct result is 168),

It (10 (00) ::::: 0.434· 1O~ ~ 1090 (the correct result is 1229),

106

1t (106
) ~ 0.434· -6- ~ 72300 (the correct result is 78498).

The relative error of the last result is

78 498 - 72 300 '" 0 08
78498 "'.,

i. e. 8 per cent, it is still considerable. However, a very rigorous
proof can be presented that the relative error of Chebyshev's
formula can be made infinitely small if 1<Y' is sufficiently large.
At some stage it will be smaller than one per cent. Further it
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will become less. than 0.1 per cent; next, less than 0.001 per cent,
etc. This explains why Chebyshev's formula is. of great theoretical
value.

To Chebyshev's credit is another formula for an approximate
calculation of 1t (n), somewhat more difficult but allowing a better
approximation:

n

f dt
n(n) ~ In t .

2

Without doing the calculations we shall give here only some
results:

1000

f ~~ 177
lnt

2

10000

f .z.; 1245
Int

2

1 000000

f ~~78627
In t

2

(1t(1000) = 168);

(1t (10000) = 1229),

(1t (1 000 (00) = 78498).

Hence, the relative error of the approximate equality

is equal to

1 000000

7[(1 0000(0) ~ f
2

dt
In t

178498 - 786271 '" 0 0016
78498 "'. ,

that is 0.16 per cent.
21. We saw that

In2 = 0.69315 < 1, and 103 = 1.09861 > 1.
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xo

This means that the area of ACDB (Fig. 34) is less than 1, and the
area of ACDtB1 is greater than 1. It can be expected that
somewhere between the points D and D1 there will be found a
point D' such that the area of ACD'B' will be equal to 1.
Such a point D' does exist. If we denote OD' by e we may state
that 2 < e < 3. Making use of the table of logarithms given on

y

Fig. 34

p. 45 we find that 2.7 < e < 2.8. Indeed,

In2.7 = In27 -In 10 ~ 0.993

and

In 2.8 = In 28 - In 10 = 1.029.

There exist various methods of finding e with any degree of accuracy.
Without considering them in detail, we shall only give the result:

e ~ 2.71828

(all the digits written here are correct). By definition

In e = 1.

The number e is termed the base of natural or Napierian
logarithms, named after John Napier, a Scottish mathematician
who published the first table of logarithms (in 1614).

Proceeding from the properties of natural logarithms we can
prove the following remarkable proposition: the natural logarithm
of any positive number b is equal to the exponent to which the
number e should be raised in order to obtain b. In other words,
if In b = o; then b = e". For example, from the fact that In 2 ~ 0.69315
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it follows that 2 ~ eO.69315; from In 10 ~ 2.30259 it follows that
10 ~ e2.30259, etc.

To prove this it is sufficient to use the property of the logarithm
of a power. Let b =~; then Inb = ln e" = xlne. But lne == 1,
therefore

In b = x,
i. e. the natural logarithm of b coincides with the exponent x.

Thus we see that natural logarithms 'can be determined
without resort to geometric representations. It could be said from
the very beginning that the natural logarithm of the number b
is an exponent of the power to which the number e ~ 2~71828

must be raised to obtain the number b. But this definition does
not -show clearly enough why we are interested in the
exponents of the power of the number e and not of some other
number. Now if natural logarithms are introduced as areas, their
definition becomes pictorial enough, and does not leave any doubt.

We should say, at this point, that besides natural logarithms,
some other logarithms can be introduced, with another base.
Thus, for instance, a common logarithm of the number b is the
exponent of the power to which the number 10 should be raised to
obtain the number b. The common logarithm of the number b
is denoted log b. Ifwe have log b == ~, then, by definition, we must have
b = lOP; it is evident that log 10 = 1. Common logarithms are
studied in high school, and there all their properties are
derived not by geometrical means, but on the basis of the known
properties of power exponents.

There is a simple relationship between common and natural
logarithms. Let In b = ex and log b =~. This means that b = e~

and b = 10'\ i. e. e':1 = lOP, Consequently, In erJ = In lOP or
e ln e = ~ In 10, i. e. rJ. = ~. 2.30259. Thus we have In b = 2.30259 log b,
whence

1
log b = 2.30259 In b = 0.4342910 b.

Having before us the table of natural logarithms and multiplying
each logarithm by 0.43429 we obtain the table of common
logarithms.

For example,

log 2 = 0.43429 In 2 = 0.43429· 0.69315 ~ 0.30103.

For log 10 we must obtain unity:

log 10 = 0.43429 In 10 ~ 0.43429·2.30259 = 1.
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The fact that the number 10 is taken as the base of common
logarithms (the number 10 is the base of the decimal system of
notation) considerably simplifies logarithmic computations. Thus,
knowing that log 2 = 0.30103 and log 10 = 1, we immediately obtain

log 20 = log 2 + log 10 = log 2 + 1 = 1.30103,

log 200 = log 2 + Jog 100 = log2 + 2 = 2.30103,

and so on.
Now, if we know that In2 = 0.69315 and In 10 = 2.302585 and

want to calculate In 20 and In 200, we should proceed as follows:

1020 = In2 + In 10 = 0.69315+ 2.30259 = 2.99574,

10200 = In2 + In 100 = In2 + 21n 10 =
= 0.69315 + 4.60517 = 5.29832.

This explains why when using logarithms as an auxiliary means
in computations we prefer to employ the tables of common
logarithms. But this in no way belittles the importance of natural
logarithms, which are encountered in the solution of many problems
in mathematics and the natural sciences. In this book we
discussed two mathematical problems leading to natural logarithms,
that is the problem concerning the area of an equilateral hyperbola
and Chebyshev's problem on the distribution of prime numbers.



SUPPLEMENT

1. To calculate the area of a curvilinear trapezoid we replaced
it either by the sum of the areas of rectangles (p. 8), or by the sum of
the areas of rectilinear trapezoids (p. 33). Using the latter method we
got for In 2 the approximate value 0.6937. On p. 44 we employed
another method to compute In 2 and obtained the value 0.69315,
which contains an ertor less than 0.000005. Hence we see that the
calculation with the aid of trapezoids led to an error greater than
0.0005, notwithstanding the fact that we divided the line segment
CD in Fig. 200 into many parts (10) so that the altitudes
of the rectilinear trapezoid represented by these segments constituted
only 0.1 each.

There are other methods of approximation suitable for any
curvilinear trapezoid and leading to highly accurate results while
requiring computations no more difficult than with the methods
just described. We shall now consider a method named after an
eminent English mathematician Thomas Simpson (1710-1761),
although a method like it was suggested 75 years earlier by his
countryman James Gregory (1638-1675). The main idea is to replace
the arcs of the graph of the function, not by chords, as was done in
the case of rectilinear trapezoids (see Fig. 26b), but by the arcs of
parabolas.

In high...school algebra books the term parabola is used to describe
the graph of the function y = ax 2

• Here we shall use this term
in a wider sense, describing as a parabola the graph of any
function of the form y = ax2 + bx + c. For a i= 0 and b = c = 0 it
is a parabola in its ordinary' position, with a vertex 'at the origin.
If a =I: 0, as before, but one of the coefficients, b or c, is also
different from zero, then, as can be verified, the graph of the function
is the same parabola but with its vertex transferred to some
point different from the origin (Fig. 35). Finally, if a = 0, we have a
straight line y = bx + c. Taking this into account, we shall continue
to call it here a parabola, interpreting it as a special case.

Let us prove now that through three points of a plane, A (xo, Yo),
B(Xb Yd, C(X2' Y2), with pairwise distinct abscissas xo, Xl and X2
we can draw one and only one parabola. This means that there
exist coefficients a, band c such that the graph of the function
y = ax 2 + bx + c will pass through each of the indicated points.
In this case the values of the coefficients are determined
uniquely by the choice of the points A, Band C.

To prove this assertion we take a, band c as unknowns.
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The coefficients a, band c we have to find must satisfy the
following three conditions: the graph of the function y = ax 2 + bx + c
must pass (1) through the point A (xo, Yo), (2) through the point
B(Xh Yl) and (3) through the point C (X2' Y2). In other words,
the value of the required function is Yo for x = XO, Yl for
x = Xl and y = Y2 for x = X2- Therefore we obtain three equations

y

o
Fig, 35

with three unknowns a, band c:

Yo = aX5 + bxo + c,

YI = ax! + bx, + C,

Y2 = ax~ + bX2 + C.

(I:

(~)

(3)

If we subtract termwise the first equation from the second and the
second from the third, we shall have a system of two equations with
the unknowns a and b:

YI - Yo = a(xi - x5) + b(XI - xo), (1')
2' 2

Y2 - Yl = a(X2 - Xl)+ b(X2 - Xl). (2')

Here it is convenient to divide all the terms of the first equation by
Xl - Xo, and of the second by X2 - Xl' By the hypothesis these
numbers are known and are different from zero. So we obtain

Yt - Yo
--- = a(xl + xo) + b,
Xl - Xo

(1")

(2")

Now we subtract the first equation of the last system from the
second equation and obtain a single equation defining a:

Y2-YI YI-YO -a( x)---- - X2- 0-
X2 - Xl Xl - Xo



By dividing all the terms of the last equation by the number
X2 - Xo (not equal to zero) we find the only possible value of the
required coefficient a. Let us substitute it, say, into equation (1").
Then from this equation we immediately find the only possible value
of coefficient b. Finally, substituting the values of a and b thus
found into equation (1) we find the only possible value of the last
unknown coefficient c. We believe the presentation of the calculations
here to be unnecessary. The expressions for a, band c will
evidently be rational numbers, specified by the coordinates of the
three given points (verify this, beginning with a).

Thus it follows from our discussion that the coefficients a, band c
cannot possess any other values except those given above. Hence
there exists only one parabola passing through the three given
points. It is easy to verify that the obtained values of a, b
and c satisfy equations (1), (2) and (3).

2. Now take three points A (xo, Yo), B (Xb Yl) and C (X2' Y2)
with pairwise distinct abscissas such that Xo < Xl < X2 and x 1 is
located exactly in the middle of the segment [xo, X2]. This

Xo + X2 .
means that Xl = 2 . According to what was proved above

one and only one parabola, Y = ax 2 + bx + c, passes through
them (Fig. 36). Let us consider the area S of the curvilinear

y

o

A

I
I

Yo 0

Xo x,

Fig. 36

E
x

trapezoid ADEC. We shall prove that it is equal to
X2 - Xo

6 (Yo + 4Yl + Y2)· In other words, for the parabola passing

through the given points the following formula is valid:

X2 - Xo
S = --6-(Yo + 4Yl + Y2)' (4)
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The case is not excluded when all the three points lie on a single
straight line. If this line is parallel to the x-axis (Fig. 37a),
then Y2 = Yl %: Yo, and from formula (4) we obtain the expression

for S: S = X2: Xo ·6yo = (X2 - xo)Yo. But this is precisely the

area of the corresponding rectangle (according to the condition
introduced on p. 7 it is expressed by a negative number if
Yo < 0). Now if the straight line is not parallel to the x-axis
(Fig. 37b), then S is equal to the area of the rectilinear

J't

o

y

A 8 C
T ? r

I I I
I I I I
I I I I
I I I

1
I
I ...

Xo x, x2 X Xo x2 x

(a) (b)

Fig. 37

trapezoid taken with the requisite sign. Its midline is Yl =

= Yo + Y2 and its altitude is equal to X2 - Xo. Substituting in
2

formula (4) 2Yl for the sum Yo + Y2' we receive S =
x - Xo= 2 (2Yl + 4ytl = (X2 - Xo) Yh again a correct result. By

6
the way, to prove formula (4) there is p no need to specially
consider each individual case. In all cases the proof is the same.

Let us calculate the coefficients a, band c by the technique
considered in the previous section. Then y = ax 2 + bx + c is a function
whose graph passes through the given points. This means that the
three equalities (1), (2) and (3) are satisfied. Now we shall prove
formula (4) without expressing the coefficients a, band c in terms of
the coordinates of the points A, Band C (in fact, we did not
give these calculations in Section 1). We shall simply make sure
that the formula is valid. The reader is asked to accept on trust
that the reasoning of the proof is correct; otherwise some cumbersome
computations would be necessary to find the expressions for Q, b
and c.

First we express the area S, which we can term the area of a
parabolic trapezoid, as an integral. Using the known properties of

61



integrals and the formulas for xI x2dx, xJ x dx and j dx, we obtain

X2 X2 Xl X2

S= J(ax2+bx+c)dx=aJx2dx+bJxdx+c Jdx=
Xo Xo

3

2a(x~ - xg)+ 3b(x~ - X5)+ 6C(X2 - xo)
6

All the binomials placed in parentheses here have a common
factor X2 - Xo. This is obvious for the last binomial and, besides,
x~ - x5 = (X2 - XO)(X2 + xo) and x~ - xg = (X2 - xo)(xi + X2 XO +
+ x5). Consequently, moving the common factor outside the
parentheses we express S in the form

S = X2 ~ Xo [a(2xj + 2X2XO + 2x~) + b(3x2 + 3xo)+ 6c].

Comparing the result with formula (4), which we are trying to
prove, we see that it only remains to verify the equation

Use the expressions (1), (2) and (3) for Yb Y2 and Y3. Since the
left-hand side of equation (5) does not contain the abscissa Xl

of the point B, we' replace Xl by the expression

Xo + X2
2 before substituting the expression for Yl. We then have

_ (xo+ X 2 ) 2 b( Xo + X2 )Yl - a 2 + 2 + c,

whence

Consequently

Yo + 4Yl + Y2 = (ax~ + bx., + c) +
+ [a(x5 + 2XOX2 + xi) + b(2xo + 2X2) -t 4cJ + (a2x~ + bX2 + c) =

= a(2x~ + 2XOX2 + 2x~) + b(3xo + 3X2) + 6c
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(we have combined the terms containing the same coefficient
a, b or c). Thus We see that formula (5) is valid and consequently
formula (4) is valid too.

Applying this formula we can immediately see, for instance, that
in the case of Xo = 2, XI = 3, X2 = 4, and Yo = 2, Yl = 4, Y2 = 3,
the area of the parabolic trapezoid ADEC (see Fig. 36) is equal to

4 - 2 (2+ 4.4 + 3) = 7. This is the exact result. But a graph of
6

some other function which is not a parabola can pass through the
same points A, Band C (in Fig. 36 it is shown by a dashed
line). If we replace this dashed line by a solid line, an arc of a parabola,
and then calculate the area of the corresponding curvilinear
trapezoid, the previous result, 7, will no longer be exact, but
approximate. Making use of this idea let us once more find an
approximate value of In 2. We made an approximate calculation

2

of the integral fd;, and for this purpose make an approximate

I

1
replacement of the arc of the hyperbola y = - by an arc of the

x
parabola passing through the points A, Band C (Fig. 38), for

y

o

Fig. 38

. Xo + X2
which Xo = 1, X2 = 2, Xl = 2 1.5, and Yo

1 1 1 1 2 .
= -= 1, Y2 = - = -2 and YI = - = -3' The parabola IS not

Xo X2 Xl

given in the figure since in this case it differs very little from
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the arc of the hyperbola. Applying formula (4) we obtain

2

In2 =fd: ~ ~ (1 +4· ~ + ~) = ~ = 0.694 ...

1
The approximation we have obtained is rather close; a more exact
value of In 2 is 0.69315 (see p. 44).

3. To attain an error as small as possible in computing
b

Jf(x) dx, the interval between a and b is divided into n equal
a

parts. Then the are of the 'graph of the function y = f(x) is
also divided into n arcs. In accordance with what was said above we
replace each of them by the arc of a parabola. Then we obtain an
approximate expression for the integral as the sum of the areas of n
parabolic trapezoids. Each of them can be found separately with the
aid of formula (4). As a result we can find an approximate
expression for the integral.

All the above can be expressed as a formula named after Simpson.
Let us designate, in turn, the abscissas of the points dividing

the line segment between a and b into n equal parts by the letter x
with even indices: Xo = a, X2, X4, ... , X2" - 2, X2n = b (in
Fig. 39 n = 8). Now x with odd indices will designate the

Fig. 39

Xo + X2
midpoints of the corresponding parts, i. e. Xl = --2-' X3 =

X2 + X4 X2n.- 2 + X2"
--2--'''·' X2n- 1 = 2 . Each of the arcs of the

graph ARtC2, C 2B3C4 , ... , C2n-2B2n-lC2n is replaced by the arc of
the parabola passing through three points: the end-points of the
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arc and the point located above the middle of the corresponding
interval of the x-axis. These are not in the drawing since they
almost merge with the arcs of the graph under consideration.
The areas of the parabolic trapezoids derived by formula (4) are
expressed as follows:

X2n - X2n-2
... , ---6--(Y2n-2 + 4Y2n-l + Y2n),

and in accordance with the above reasoning their sum gives an
b

approximate value of the integral Jf(x)dx. Before putting down
a

this sum note that the difference between the two x's and the

. hb . bers I b - aneig ounng even num ers IS --
n

b-a
Consequently, putting the common factor 6n outside the

brackets we obtain:

b b - a
Jf(x)dx ~ -6-[(Yo + 4Yl + Y2) +
a n

+ (Y2 + 4Y3 + Y4) + ... + (Y2n-2 + 4Y2n-l + Y2n)],

i. e. we finally obtain the expression

b b - a
Jf(x)dx ~ -6-[(Yo + Y2n) +
a n

+ 2(y2 + Y4 + ... + Y2n-2) + 4(Yl + Y3 + ... + Y2n-l)]· (6)

This is Simpson's formula in its general form. The extreme ordinates
in square brackets are taken with the coefficient 1, all the other
ordinates with even indices are taken with the coefficient 2,
and those with odd indices with the coefficient 4.
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Formula (4) in the preceding article can be considered as a
special case of Simpson's formula, when we use only one parabolic
traperoid, i. e. n = 1. We see, for instance, that it gives In 2
with an error of the order of 0.001. Let us make sure that
for n = 5 Simpson's formula allows us to calculate in 2 with an
error of the order of 0.0000001. Thus, let us make use of

2

Simpson's formula (6) to calculate fd: taking n = 5. Here a = 1,

1

b = 2, f(x) = ~; for n = 5 we obtain Xo = 1, X2 = 1.2, X4 == 1.4,
X

X6 = 1.6, XB = 1.8, XlO = 2.0, Xl = 1,.1, X3 = 1.3, Xs = 1.5, X7 =
= 1.7, Xg = 1.9. We calculate the values of ordinates to seven
decimal points (with an accuracy to within 0.00000oo5), and at
once compile the necessary sums to substitu te them into

Simpson's formula. We receive: Yo = _1_ = 1.00000oo, YIO =
Xo

1 1
= --= 0.500000O, Yl + YI0 = 1.500000o; Y2 = - = 0.8333333,

XI0 X2

1 1 1
Y4 = -= 0.7142857, Y6 = ~ = 0.6250000, YB = - = 0.5555556,

X4 X6 XB

1
2(Y2 + Y4 + Y6 + Ys) = 5.4563492; Yl = - = 0.9090909, Y3 =

Xl

1 1 1
= - = 0.7692308, Ys = - = 0.6666667, Y7 = - = 0.5882353,

X3 Xs X7

1
Y9 = -= 0.5263158, 4(yl + Y3 + Ys + Y7 + Y9) 13.8381580.

X9

Therefore, formula (6) gives for In 2 (n = 5)
2

In 2 = f d: ~ 6 \ (1.500000o+5.4563492+ 13.8381580) = 0.693150.

1

But using formula (*) on p. 43 we can compute In 2 with any
degree of accuracy; we have only to assume k = 1, as was done
on p. 43, and take n to be sufficiently large. Thus we can make
sure that the value of In 2 corrected to eight decimal points is
0.69314718. Consequently, the value of In2 obtained from Simpson's
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formula differs from the true value by a number of the order
of 0.000003, that is, the validity of this formula in this case is
very great.

A more complicated analysis can demonstrate that Simpson's
formula can yield a high degree of accuracy even for small n,
when the graph of the function is very smooth and flat. The accuracy
decreases when the graph contains very steep sections.

4. Let us apply Simpson's formula to calculate approximately
the area of a circle. SInce it is proportionate to the square of
the radius, it is sufficient to carry out the calculations' for a circle
of radius equal to 1. Then, as we know, the area will be equal to
rr- 12 = 1t. Hence our problem is to calculate approximately the
number 1t using Simpson's formula. Using the property of the

. symmetry of a circle, we reduce the calculations to those of a quarter
of the circle (Fig. 40). Then the result will be an approximate value

1t
of number 4.

In this specific case we cannot expect a high degree of accuracy,
although we make calcula-tions for n = 8, for the reason of the very
great steepness of the right side of the graph. Below we shall show
what should be done in this case to improve the result. But
now we shall begin the calculations. Since y is expressed in tel IDS of x

by the formula y =~ (Fig. 40), the problem reduces to

Fig. 40

1

computing the integral J~dx by Simpson's formula. We shall
o

assume n = 8. The abscissas of the point of division with even
1 .

numbers will then pass through 8' and those WIth odd numbers
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will differ from the preceding points that are nearest to them by

1 1 1 3
16· We obtain: Xo == 0, Xl6 == 1, X2 = 8' X4 = 4' X6 == 8'

1 5 3 7 1 3
xS==2' XIO==g' XI2==4' Xl4 ==s,xI=16' x3==16'xs=

5 7 9 11 13 15
== 16~ .':7 == 16' X9 == 16' Xli == 16-' X l3 == 16' XIS == 16

Let us calculate the corresponding ordinates by the formula

Y ==~ and complete the sums which are to be substituted

into Simpson's formula. We receive: Yo == 1, Y16 == 0.0000, Yo +
+ Yl6 == 1.0000, Y2 == 0.9922, Y4 == 0.9682, Y6 == 0.9270, Ys == 0.8660,
YIO = 0.7806, Y12 == 0.6614~ Y14 == 0.4841; 2(Y2 + Y4 + Y6 + Ys +
+ YIO + Y12 + Y14) == 11.3590; Yl == 0.9980, Y3 == 0.9823, Ys == 0.9499,
Y7 = 0.8992, Y9 == 0.8268, Yll == 0.7262, Yl3 = 0.5830, Y15 = 0.3480;
4(Yl + Y3 + Ys + Y7 + Y9 + Yll + Y13 + YlS) = 25.2536. It follows
that

1t 11~ 1"4 = JV 1 - x 2 dx ~ 6~ (1.0000 + 11.3590 + 25.2536) = 0.7836.'
o

When 1t is computed by other means with an accuracy to within

0.00005, the result is 3.1416, whence ~ = 0.7854. Hence the

result obtained by Simpson's formula contains an error of the

order of 0.002; it should be rounded off to 0.001: ~ ~ 0.784.

Now we shall use Simpson's formula with the same end in view
(calculation of 1t) but in a more favourable situation. We shall
move some distance from the steep right end of the graph and

0.5

consider the integral J~dx. If we take this integral as
o

yielding the area of the curvilinear trapezoid AOCD (Fig. 41)
and subtract from it the area of the triangle oeD equal to

~.~. V3 = 0.2165064, we obtain the area of the circular sector
222

AOD with the central angle 30° = 3~O. Thus the difference
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0.5

J Vi - X
2 dx - 0.2165064 yields the value of one-twelfth of the

o

area of the circle, 1. e. 1~' Let us use Simpson's formula for
0.5

n = 4 to compute J~dx; in this case the abscissas of the
o

division points xo, Xh X2, X3' X4, xS, X6, X7 and Xs will
remain the same as before. But we shall now calculate the
corresponding ordinates to seven decimal points to attain a high
degree of accuracy in the result. In this way we receive the following
values for the ordinates and their sums contained in Simpson's
formula: Yo = 1.00000oo, Ys = 0.8660254, Yo + Ys = 1.8660254; Y2 =
= 0.9921567, Y4 = 0.9682458, Y6 = 0.9270248; 2 (Y2 + Y4 + Y6) =
= 5.7748546;. Yt = 0.9980450, Y3'Z:: 0.9822646, Ys = 0.9499178, Y7 =
= 0.8992184, 4(Yl + Y3 + Ys + Y7) = \5.3177832. Substituting these

y

A 0

o x

Fig. 41

values of the sums of the ordinates into Simpson's formula we
obtain

0.5 05
J VI - x2dx ~ 6:4 (1.8660254 + 5.7748546+ 15.3177832) =
o

= 0.4783055.

In accordance with the above reasoning it follows that

1t 0.5

12 = J VI - x2dx - 0.2165064~ 0.2617991.
o
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The accuracy of the result obtained can be verified by multiplying
it by 12 (thus increasing the error of the result the same
number of times); this gives 3.1415892 as the value of the number R.

But with an accuracy to within 0.0000005 the number 1t is equal to
3.141593 (this can be found by Simpson's formula for greater
values of n; there exist, however, other computing techniques
requiring less laborius calculations). Consequently, giving the result
to only five decimal points we have 1t ~ 3.14159, with an
accuracy of within 0.000005. This very close approximation to the
famous number 1t was obtained by a skilful application of
Simpson's formula.
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LITTLE MATHEMATICS LIBRARY

REMARKABLE CURVES

by A.1. Markushevich, Mem. USSR Acad. Sc.

This small booklet is based on a lecture delivered by the author
to Moscow schoolboys of 7th and 8th forms, and contains a
description of a circle, ellipse, hyperbola, parabola, Archimedian

spiral, and other curves. The book has been revised and enlarged
several times.
The booklet is intended for those who are interested in mathe
matics and possess a middle standard background.

RECURSION SEQUENCES
by A.1. Markushevich, Mem. USSR Acad. Sc.

This book is one of the "Popular Lectures in Mathematics"
series, widely used by Soviet school mathematics clubs and
circles and on teachers' refresher courses. Is a clear introduction
for fifth and sixth-form pupils to the variety of recurring series
and progressions and their role in mathematics. Is well illustrated
with examples and 73 formulas.

COMPLEX NUMBERS AND CONFORMAL MAPPINGS
by A.1. Markushevich, Mem. USSR Acad. Sc.

The book, containing a wealth of illustrative material, acquaints
the reader with complex numbers and operations on them and
also with conformal mappings, that is mappings which preserve
the angles (they are empoyed in cartography, mechanics, phy
sics). It is intended for all those who are interested in mathe
matics and primarily for high-school students. It can also be of
use for self-education. For proper comprehension of the content
of the book the reader must possess high-school knowledge of
mathematics.





This book offers a geometric theory of logarithms, in 

which (natural) logarithms are represented as areas of 

various geometrical shapes. All the properties of 

logarithms, as well as their methods of calculation, are 

then determined from the properties of the areas. The 

book introduces most simple concepts and properties of 

integral caculus, without resort to concept of derivative. 

The book is intended for all lovers of mathematics, 

particularly school children.
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